Saturday , August 19 2017

Learning Vector Space Models with SpaCy OReilly Media

Learning Vector Space Models with SpaCy OReilly Media|120.63 MB

Learning Vector Space Models with SpaCy
By Aaron Kramer
Publisher: Infinite Skills
Release Date: March 2017
Duration: 0 hours 32 minutes

Build Dense Vector Representations of Text and Train Them Using Gensim

Information representation is a fundamental aspect of computational linguistics and learning from unstructured data. This course explores vector space models, how they’re used to represent the meaning of words and documents, and how to create them using Python-based spaCy. You’ll learn about several types of vector space models, how they relate to each other, and how to determine which model is best for natural language processing applications like information retrieval, indexing, and relevancy rankings.

The course begins with a look at various encodings of sparse document-term matrices, moves on to dense vector representations that need to be learned, touches on latent semantic analysis, and finishes with an exploration of representation learning from neural network models with a focus on word2vec and Gensim. To get the most out of this course, learners should have intermediate level Python skills.

Understand how and why vector models are used in natural language processing
Discover the distributional hypothesis and its use in word and document vectors
Explore term-document tf-idf, latent semantic analysis, and neural embedding models
Gain experience integrating neural embedding models with spaCy


Site's VIP Section

About LordMMB